PDMLP: Phishing Detection using Multilayer Perceptron

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Auto-kernel using multilayer perceptron

This work presents a constructive method to train the multilayer perceptron layer after layer successively and to accomplish the kernel used in the support vector machine. Data in different classes will be trained to map to distant points in each layer. This will ease the mapping of the next layer. A perfect mapping kernel can be accomplished successively. Those distant mapped points can be dis...

متن کامل

Feature Selection Using a Multilayer Perceptron

The problem of selecting the best set of features for target recognition using a multilayer perceptron is addressed in this paper. A technique has been developed which analyzes the weights in a multilayer perceptron to determine which features the network finds important and which are unimportant. A brief introduction to the use of multilayer perceptrons for classification and the training rule...

متن کامل

Manifold Construction Using the Multilayer Perceptron

We present a training method which adjusts the weights of the MLP (Multilayer Perceptron) to preserve the distance invariance in a low dimensional space. We apply visualization techniques to display the detailed representations of the trained neurons.

متن کامل

Using Background Knowledge in Multilayer Perceptron Learning

In this contribution we present a method for constraining the learning of a Multi-Layer Perceptron network with background knowledge. The algorithms presented here can be used to train the partial derivatives of the network to match given numerical values or to minimize a given cost function. Thus the mapping produced by the network can be constrained according to known input-output models, mon...

متن کامل

Creating of Conceptual Lattices using Multilayer Perceptron

Creating of concept lattices is unfortunately difficult timeconsuming process. Neural networks can solve this problem, because they are adaptive in nature, due to their use of a training phase for learning the relationships in the input data, and their generalization capabilities provide a means of coping with noisy or incomplete data. In this text there is presented one possible approach to cr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Network Security & Its Applications

سال: 2020

ISSN: 0975-2307

DOI: 10.5121/ijnsa.2020.12304